- Projets de recherche : /fr/recherche-appliquee/instituts/energy/projets-de-recherche/
- Infrastructure : /fr/recherche-appliquee/instituts/energy/infrastructure/
- Equipe : /fr/recherche-appliquee/instituts/energy/equipe/
- Agenda : /fr/recherche-appliquee/instituts/energy/agenda/
- Actualité : /fr/recherche-appliquee/instituts/energy/actualite/
- Projets de recherche : /fr/recherche-appliquee/instituts/energy/projets-de-recherche/
- Infrastructure : /fr/recherche-appliquee/instituts/energy/infrastructure/
- Equipe : /fr/recherche-appliquee/instituts/energy/equipe/
- Agenda : /fr/recherche-appliquee/instituts/energy/agenda/
- Actualité : /fr/recherche-appliquee/instituts/energy/actualite/
High-current air-core inductor design optimization
Summary
Electrical and thermal networks
CERN/EU, HEIA-FR
David Cajander
Skills directory
January 2018 - December 2020
Development of an optimal design environment for high-current air-core inductors
This project aims to establish an optimized design framework for air-core inductors intended for the power converters used in particle accelerator systems. The methodology integrates analytical modeling, finite element analysis (FEA), prediction of internal electromagnetic forces, and artificial neural network (ANN) surrogate models, all embedded within a multi-objective optimization algorithm (targeting inductance, losses, mechanical stress, and compactness).
The methodology has been validated on a 100 kA pulsed inductor for accelerator applications, demonstrating accurate prediction of inductance and internal forces. The approach enables easy integration in the existing industrial design processes and environments, yielding a significant reduction in computational time and improved convergence in the design space.